16 Commits

30 changed files with 1000 additions and 137 deletions

View File

@@ -1,6 +1,8 @@
SOURCES = src/mem/heap/kheap.c src/mem/paging/vmm.c src/mem/paging/paging.c src/mem/paging/pmm.c src/string/string.c src/io/kbd/ps2.c src/io/serial/serial.c src/io/term/printf.c src/io/term/term.c src/idt/idt.c src/mem/gdt/gdt.c src/mem/misc/utils.c src/time/timer.c src/kmain.c
build:
rm -f *.o
x86_64-elf-gcc -g -c -I src src/kbd/ps2.c src/time/timer.c src/idt/idt.c src/mem/utils.c src/mem/gdt.c src/io/serial.c src/io/term.c src/io/printf.c src/kmain.c -Wall -Wextra -std=gnu99 -nostdlib -ffreestanding -fno-stack-protector -fno-stack-check -fno-PIC -ffunction-sections -fdata-sections -mcmodel=kernel
x86_64-elf-gcc -g -c -Isrc $(SOURCES) -Wall -Wextra -std=gnu99 -nostdlib -ffreestanding -fno-stack-protector -fno-stack-check -fno-PIC -ffunction-sections -fdata-sections -mcmodel=kernel
objcopy -O elf64-x86-64 -B i386 -I binary zap-light16.psf zap-light16.o
nasm -f elf64 src/idt/idt.S -o idt_stub.o
x86_64-elf-ld -o pepperk -T linker.ld *.o
@@ -28,7 +30,7 @@ build-iso: limine/limine build
./limine/limine bios-install pepper.iso
debug:
qemu-system-x86_64 -drive file=pepper.iso -s -S -d int -no-reboot &
qemu-system-x86_64 -drive file=pepper.iso -s -S -d int -no-reboot -no-shutdown &
gdb pepperk --command=debug.gdb
run: build-iso

View File

@@ -7,6 +7,25 @@ First install the dependencies: `sudo apt install xorriso make qemu-system`
Then, to compile the kernel and make an ISO image file: `make build-iso`
To run it with QEMU, `make run`
## TODO
The basics that I'm targeting are:
- Fix terminal driver (backspace issues, scrolling) OR add Flanterm or equivalent
- Implement paging / see what Limine does at boot with memory management
- Implement tasks, and task switching
- Load an executable
- Scheduler (round-robin using the PIT timer interrupt)
- Filesystem (TAR for read-only initfs, then maybe read-write using FAT12/16/32
- Getting to userspace (syscalls)
- Porting musl libc or equivalent
In the future, maybe?
- SMP support
- Parsing the ACPI tables and using them for something
- Replacing the PIT timer with APIC
## Thanks
PepperOS wouldn't be possible without the following freely-licensed software:

View File

@@ -1,8 +1,10 @@
#include "idt.h"
#include <stdint.h>
#include <stddef.h>
#include "../io/serial.h"
#include "../kbd/ps2.h"
#include "io/serial/serial.h"
#include "io/kbd/ps2.h"
#include <kernel.h>
#include <stdbool.h>
struct interrupt_descriptor idt[256];
struct idtr idt_reg;
@@ -49,7 +51,65 @@ void idt_init()
idt_set_entry(i, vector_0_handler + (i*16), 0);
}
idt_load(&idt);
serial_kputs("kernel: idt: Initialized IDT!\n");
DEBUG("IDT initialized");
}
static inline uint64_t read_cr2(void)
{
uint64_t val;
asm volatile ("mov %%cr2, %0" : "=r"(val));
return val;
}
static void page_fault_handler(struct cpu_status_t* ctx)
{
// It could be used to remap pages etc. to fix the fault, but right now what I'm more
// interested in is getting more info out of those numbers cause i'm lost each time i have
// to read all this mess
uint64_t cr2 = read_cr2();
DEBUG("\x1b[38;5;231mPage Fault at rip=0x%p, err=%u (%s%s%s%s%s%s%s%s) when accessing addr=0x%p\x1b[0m", ctx->iret_rip, ctx->error_code,
CHECK_BIT(ctx->error_code, 0) ? "PAGE_PROTECTION_VIOLATION " : "PAGE_NOT_PRESENT ",
CHECK_BIT(ctx->error_code, 1) ? "ON_WRITE " : "ON_READ ",
CHECK_BIT(ctx->error_code, 2) ? "IN_USER_MODE" : "IN_KERNEL_MODE",
CHECK_BIT(ctx->error_code, 3) ? " WAS_RESERVED" : "",
CHECK_BIT(ctx->error_code, 4) ? " ON_INSTRUCTION_FETCH" : "",
CHECK_BIT(ctx->error_code, 5) ? " PK_VIOLATION" : "",
CHECK_BIT(ctx->error_code, 6) ? " ON_SHADOWSTACK_ACCESS" : "",
CHECK_BIT(ctx->error_code, 7) ? " SGX_VIOLATION" : "",
cr2);
/* if (CHECK_BIT(ctx->error_code, 0))
{
panic(ctx);
} */
panic(ctx);
}
static void gp_fault_handler(struct cpu_status_t* ctx)
{
DEBUG("\x1b[38;5;231mGeneral Protection Fault at rip=0x%p, err=%u (%s)\x1b[0m",
ctx->iret_rip,
ctx->error_code,
(ctx->error_code == 0) ? "NOT_SEGMENT_RELATED" : "SEGMENT_RELATED");
// Segment-related
if (ctx->error_code != 0)
{
bool is_external = CHECK_BIT(ctx->error_code, 0);
// is it IDT, GDT, LDT?
uint8_t table = ctx->error_code & 0x6; // 0b110 (isolate table)
uint16_t index = ctx->error_code & 0xFFF8; // 13*1 1111111111111 + 000 = 1111111111111000
char* table_names[4] = {"GDT", "IDT", "LDT", "IDT"};
DEBUG("\x1b[38;5;231m%s in %s index %u\x1b[0m",
is_external ? "EXTERNAL" : "INTERNAL",
table_names[table],
index);
}
panic(ctx);
}
struct cpu_status_t* interrupt_dispatch(struct cpu_status_t* context)
@@ -57,74 +117,75 @@ struct cpu_status_t* interrupt_dispatch(struct cpu_status_t* context)
switch(context->vector_number)
{
case 0:
serial_kputs("kernel: idt: Divide Error!\n");
DEBUG("Divide Error!");
break;
case 1:
serial_kputs("kernel: idt: Debug Exception!\n");
DEBUG("Debug Exception!");
break;
case 2:
serial_kputs("kernel: idt: NMI Interrupt!\n");
DEBUG("NMI Interrupt!");
break;
case 3:
serial_kputs("kernel: idt: Breakpoint Interrupt!\n");
DEBUG("Breakpoint Interrupt!");
break;
case 4:
serial_kputs("kernel: idt: Overflow Trap!\n");
DEBUG("Overflow Trap!");
break;
case 5:
serial_kputs("kernel: idt: BOUND Range Exceeded!\n");
DEBUG("BOUND Range Exceeded!");
break;
case 6:
serial_kputs("kernel: idt: Invalid Opcode!\n");
DEBUG("Invalid Opcode!");
break;
case 7:
serial_kputs("kernel: idt: Device Not Available!\n");
DEBUG("Device Not Available!");
break;
case 8:
serial_kputs("kernel: idt: Double Fault!\n");
DEBUG("Double Fault!");
break;
case 9:
serial_kputs("kernel: idt: Coprocessor Segment Overrun!\n");
DEBUG("Coprocessor Segment Overrun!");
break;
case 10:
serial_kputs("kernel: idt: Invalid TSS!\n");
DEBUG("Invalid TSS!");
break;
case 11:
serial_kputs("kernel: idt: Segment Not Present!\n");
DEBUG("Segment Not Present!");
break;
case 12:
serial_kputs("kernel: idt: Stack-Segment Fault!\n");
DEBUG("Stack-Segment Fault!");
break;
case 13:
serial_kputs("kernel: idt: General Protection Fault!\n");
gp_fault_handler(context);
break;
case 14:
serial_kputs("kernel: idt: Page Fault!\n");
// Better debugging for page faults...
page_fault_handler(context);
break;
case 15:
serial_kputs("kernel: idt: Intel Reserved Interrupt! (Achievement unlocked: How Did We Get Here?)\n");
DEBUG("Intel Reserved Interrupt! (Achievement unlocked: How Did We Get Here?)");
break;
case 16:
serial_kputs("kernel: idt: x87 Floating-Point Error!\n");
DEBUG("x87 Floating-Point Error!");
break;
case 17:
serial_kputs("kernel: idt: Alignment Check Fault!\n");
DEBUG("Alignment Check Fault!");
break;
case 18:
serial_kputs("kernel: idt: Machine Check!\n");
DEBUG("Machine Check!");
break;
case 19:
serial_kputs("kernel: idt: SIMD Floating-Point Exception!\n");
DEBUG("SIMD Floating-Point Exception!");
break;
case 20:
serial_kputs("kernel: idt: Virtualization Exception!\n");
DEBUG("Virtualization Exception!");
break;
case 21:
serial_kputs("kernel: idt: Control Protection Exception!\n");
DEBUG("Control Protection Exception!");
break;
case 32:
//serial_kputs("Tick!");
//DEBUG("Tick!");
ticks++;
// Send an EOI so that we can continue having interrupts
outb(0x20, 0x20);
@@ -135,7 +196,7 @@ struct cpu_status_t* interrupt_dispatch(struct cpu_status_t* context)
break;
default:
serial_kputs("kernel: idt: Unexpected interrupt\n");
DEBUG("Unexpected interrupt");
break;
}

View File

@@ -1,10 +1,10 @@
// PS/2 Keyboard support
#include "../io/serial.h"
#include "../io/printf.h"
#include "io/serial/serial.h"
#include "ps2.h"
#include <stdint.h>
#include "../io/term.h"
#include "io/term/term.h"
#include <kernel.h>
// The key status bitfield will be used to see if ALT, CONTROL, or SHIFT is pressed
uint8_t key_status = 0b00000000;
@@ -206,7 +206,7 @@ void keyboard_handler()
}
}
serial_kputs("key pressed!\n");
skputs("key pressed!\n");
}
// End of Interrupt (to master PIC)
@@ -230,7 +230,8 @@ void keyboard_init(unsigned char layout)
break;
default:
serial_kputs("Unsupported layout.");
break;
skputs("Unsupported layout.");
return;
}
DEBUG("PS/2 Keyboard initialized");
}

View File

@@ -1,4 +1,4 @@
#include "../kernel.h"
#include <kernel.h>
#include "serial.h"
void outb(int port, unsigned char data)
@@ -36,7 +36,7 @@ int serial_init()
// Set normal operation mode
outb(PORT + 4, 0x0F);
serial_kputs("\n\nkernel: serial: Serial initialization OK!\n");
DEBUG("serial initialized");
return 0;
}
@@ -45,18 +45,20 @@ static int is_transmit_empty()
return inb(PORT + 5) & 0x20;
}
void write_serial(char c)
// Serial kernel putchar
void skputc(char c)
{
while (!is_transmit_empty()); // wait for free spot
outb(PORT, c);
}
void serial_kputs(const char* str)
// Serial kernel putstring
void skputs(const char* str)
{
unsigned int i=0;
while (str[i])
{
write_serial(str[i]);
skputc(str[i]);
i++;
}
}

View File

@@ -5,6 +5,7 @@ void outb(int port, unsigned char data);
unsigned char inb(int port);
int serial_init();
void serial_kputs(const char* str);
void skputs(const char* str);
void skputc(char c);
#endif

View File

@@ -1,11 +1,17 @@
// Terminal output
/*
There are a couple of bugs here and there but for now I don't care too much
because this shitty implementation will be replaced one day by Flanterm
(once memory management is okay: paging & kernel malloc)
*/
#include <limine.h>
#include <stddef.h>
#include "kernel.h"
#include <kernel.h>
#include "term.h"
#include "mem/misc/utils.h"
extern struct limine_framebuffer* framebuffer;
extern struct boot_context boot_ctx;
// Importing the PSF object file
extern unsigned char _binary_zap_light16_psf_start[];
@@ -28,13 +34,19 @@ Cursor cursor = {0};
unsigned char* fb;
struct limine_framebuffer* framebuffer;
uint8_t lines_length[MAX_LINES];
int term_init()
{
// Get framebuffer address from Limine struct
if (framebuffer)
if (boot_ctx.fb)
{
fb = framebuffer->address;
fb = boot_ctx.fb->address;
framebuffer = boot_ctx.fb;
DEBUG("terminal initialized, fb=0x%p (width=%u height=%u pitch=%u bpp=%u)", fb, framebuffer->width, framebuffer->height, framebuffer->pitch, framebuffer->bpp);
return 0;
}
return -ENOMEM;
@@ -78,10 +90,56 @@ static void erase_char(int px, int py)
}
}
static inline size_t term_max_lines(void)
{
return framebuffer->height / FONT_HEIGHT;
}
void term_scroll()
{
const size_t row_height = FONT_HEIGHT;
const size_t row_bytes = framebuffer->pitch;
const size_t screen_rows = framebuffer->height;
// Move framebuffer up by one text row
//memmove(fb, fb + row_height * row_bytes, (screen_rows - row_height) * row_bytes);
for (size_t i = 0; i < (screen_rows - row_height) * row_bytes; i++)
{
fb[i] = fb[i + row_height * row_bytes];
}
// Clear last text row
size_t clear_start = (screen_rows - row_height) * row_bytes;
memset(fb + clear_start, 0, row_height * row_bytes);
// Shift line lengths by 1 (for backspace handling)
size_t max_lines = term_max_lines();
for (size_t i = 1; i < max_lines; i++)
{
lines_length[i - 1] = lines_length[i];
}
lines_length[max_lines - 1] = 0;
if (cursor.y > 0)
{
cursor.y--;
}
}
void putchar(char c)
{
if ((c == '\n') && ((cursor.y+1)*FONT_HEIGHT >= framebuffer->height))
{
term_scroll();
return;
}
if (c == '\n')
{
lines_length[cursor.y] = cursor.x;
cursor.x = 0;
cursor.y++;
return;
@@ -101,7 +159,8 @@ void putchar(char c)
if (cursor.x == 0)
{
cursor.y--;
cursor.x = (framebuffer->width / FONT_WIDTH) -1; // here
// cursor.x = (framebuffer->width / FONT_WIDTH) -1; // here
cursor.x = lines_length[cursor.y];
}
else {
cursor.x--;
@@ -119,6 +178,11 @@ void putchar(char c)
cursor.y++;
}
if ((cursor.y+1)*FONT_HEIGHT >= framebuffer->height)
{
term_scroll();
}
int px = cursor.x * FONT_WIDTH;
int py = cursor.y * FONT_HEIGHT;
draw_char(c, px, py, WHITE, BLACK);

View File

@@ -11,6 +11,8 @@ enum TermColors
WHITE = 0xffffff
};
#define MAX_LINES 256
#define PSF1_FONT_MAGIC 0x0436
typedef struct

View File

@@ -1,6 +1,10 @@
#ifndef KERNEL_H
#define KERNEL_H
#define PEPPEROS_VERSION_MAJOR "0"
#define PEPPEROS_VERSION_MINOR "0"
#define PEPPEROS_VERSION_PATCH "1"
enum ErrorCodes
{
ENOMEM,
@@ -10,4 +14,26 @@ enum ErrorCodes
#define CLEAR_INTERRUPTS __asm__ volatile("cli")
#define SET_INTERRUPTS __asm__ volatile("sti")
#include "io/serial/serial.h"
#include "io/term/printf.h"
#include "idt/idt.h"
#define DEBUG(log, ...) fctprintf((void*)&skputc, 0, "debug: [%s]: " log "\r\n", __FILE__, ##__VA_ARGS__)
#define CHECK_BIT(var,pos) ((var) & (1<<(pos)))
// printf("debug: [%s]: " log "\n", __FILE__, ##__VA_ARGS__);
void panic(struct cpu_status_t* ctx);
void hcf();
#define assert(check) do { if(!(check)) hcf(); } while(0)
struct boot_context
{
struct limine_framebuffer* fb;
struct limine_memmap_response* mmap;
struct limine_hhdm_response* hhdm;
struct limine_kernel_address_response* kaddr;
};
#endif

View File

@@ -1,15 +1,19 @@
#include <stdbool.h>
#include <stddef.h>
#include <limine.h>
#include "io/term.h"
#include "io/printf.h"
#include "io/serial.h"
#include "mem/gdt.h"
#include "mem/utils.h"
#include "io/term/term.h"
#include "io/term/printf.h"
#include "io/serial/serial.h"
#include "mem/gdt/gdt.h"
#include "mem/misc/utils.h"
#include "idt/idt.h"
#include "kernel.h"
#include "time/timer.h"
#include "kbd/ps2.h"
#include "io/kbd/ps2.h"
#include "mem/paging/pmm.h"
#include "mem/paging/paging.h"
#include "mem/paging/vmm.h"
#include "mem/heap/kheap.h"
// Limine version used
__attribute__((used, section(".limine_requests")))
@@ -22,16 +26,35 @@ static volatile struct limine_framebuffer_request framebuffer_request = {
.revision = 0
};
// Memory map request
__attribute__((used, section(".limine_requests")))
static volatile struct limine_memmap_request memmap_request = {
.id = LIMINE_MEMMAP_REQUEST,
.revision = 0
};
// Higher Half Direct Map
__attribute__((used, section(".limine_requests")))
static volatile struct limine_hhdm_request hhdm_request = {
.id = LIMINE_HHDM_REQUEST,
.revision = 0
};
// Executable Address/Kernel Address (find base phys/virt address of kernel)
__attribute__((used, section(".limine_requests")))
static volatile struct limine_kernel_address_request kerneladdr_request = {
.id = LIMINE_KERNEL_ADDRESS_REQUEST,
.revision = 0
};
__attribute__((used, section(".limine_requests_start")))
static volatile LIMINE_REQUESTS_START_MARKER;
__attribute__((used, section(".limine_requests_end")))
static volatile LIMINE_REQUESTS_END_MARKER;
struct limine_framebuffer* framebuffer;
// Panic
static void hcf()
// Panic (should dump registers etc. in the future)
void hcf()
{
for (;;)
{
@@ -39,18 +62,36 @@ static void hcf()
}
}
void panic(struct cpu_status_t* ctx)
{
DEBUG("\x1b[38;5;231m\x1b[48;5;196mKernel panic!!!\x1b[0m at rip=%p\nSomething went horribly wrong! vect=0x%.2x errcode=0x%x\nrax=%p rbx=%p rcx=%p rdx=%p\nrsi=%p rdi=%p r8=%p r9=%p\nr10=%p r11=%p r12=%p r13=%p\nr14=%p r15=%p\n\nflags=%p\nstack at rbp=%p\nHalting...",
ctx->iret_rip,
ctx->vector_number, ctx->error_code, ctx->rax, ctx->rbx, ctx->rcx, ctx->rdx, ctx->rsi, ctx->rdi,
ctx->r8, ctx->r9, ctx->r10, ctx->r11, ctx->r12, ctx->r13, ctx->r14, ctx->r15, ctx->iret_flags,
ctx->rbp);
hcf();
}
const char* splash = "pepperOS version "PEPPEROS_VERSION_MAJOR"."PEPPEROS_VERSION_MINOR"."PEPPEROS_VERSION_PATCH"\n";
struct boot_context boot_ctx;
// This is our entry point
void kmain()
{
if (!LIMINE_BASE_REVISION_SUPPORTED) hcf();
if (framebuffer_request.response == NULL || framebuffer_request.response->framebuffer_count < 1) hcf();
// Get the first framebuffer from the response
framebuffer = framebuffer_request.response->framebuffers[0];
// Populate boot context
boot_ctx.fb = framebuffer_request.response ? framebuffer_request.response->framebuffers[0] : NULL;
boot_ctx.mmap = memmap_request.response ? memmap_request.response : NULL;
boot_ctx.hhdm = hhdm_request.response ? hhdm_request.response : NULL;
boot_ctx.kaddr = kerneladdr_request.response ? kerneladdr_request.response : NULL;
if (term_init()) hcf();
serial_init();
if (serial_init()) kputs("kernel: serial: error: Cannot init serial communication!");
memmap_display(boot_ctx.mmap);
hhdm_display(boot_ctx.hhdm);
DEBUG("kernel: phys_base=0x%p virt_base=0x%p", boot_ctx.kaddr->physical_base, boot_ctx.kaddr->virtual_base);
CLEAR_INTERRUPTS;
gdt_init();
@@ -58,11 +99,30 @@ void kmain()
timer_init();
SET_INTERRUPTS;
pmm_init(boot_ctx.mmap, boot_ctx.hhdm);
// Remap kernel , HHDM and framebuffer
paging_init(boot_ctx.kaddr, boot_ctx.fb);
kheap_init();
void* ptr = kmalloc(10); DEBUG("(KMALLOC TEST) Allocated 10 bytes at 0x%p", ptr);
void* ptr2 = kmalloc(200); DEBUG("(KMALLOC TEST) Allocated 200 bytes at 0x%p", ptr2);
kfree(ptr);
void* ptr3 = kmalloc(5); DEBUG("(KMALLOC TEST) Allocated 5 bytes at 0x%p", ptr3);
vmm_init();
keyboard_init(FR);
// Draw something
printf("%s, %s!", "Hello", "world");
term_init();
kputs(splash);
for (int i=0; i<50; i++)
{
printf("testing, attention please %d\n", i);
timer_wait(1000);
}
//printf("%d", 4/0);
hcf();
}

View File

@@ -1,6 +1,7 @@
#include "gdt.h"
#include <stdint.h>
#include "../io/serial.h"
#include "io/serial/serial.h"
#include <kernel.h>
// Descriptors are 8-byte wide (64bits)
// So the selectors will be (in bytes): 0x0, 0x8, 0x10, 0x18, etc..
@@ -78,5 +79,5 @@ void gdt_init()
gdt_load();
gdt_flush();
serial_kputs("kernel: gdt: Initialized GDT!\n");
DEBUG("GDT initialized");
}

106
src/mem/heap/kheap.c Normal file
View File

@@ -0,0 +1,106 @@
#include "kheap.h"
#include "mem/paging/paging.h"
#include "mem/paging/pmm.h"
#include <stddef.h>
#include <kernel.h>
extern uint64_t kernel_phys_base;
extern uint64_t kernel_virt_base;
uintptr_t kheap_start;
static struct heap_block_t* head = NULL;
static uintptr_t end;
// Kernel root table (level 4)
extern uint64_t *kernel_pml4;
static void kheap_map_page()
{
uintptr_t phys = pmm_alloc();
paging_map_page(kernel_pml4, end, phys, PTE_PRESENT | PTE_WRITABLE | PTE_NOEXEC);
end += PAGE_SIZE;
DEBUG("Mapped first kheap page");
}
void kheap_init()
{
kheap_start = ALIGN_UP(kernel_virt_base + KERNEL_SIZE, PAGE_SIZE);
end = kheap_start;
// At least 1 page must be mapped for it to work
kheap_map_page();
// Give linked list head its properties
head = (struct heap_block_t*)kheap_start;
head->size = PAGE_SIZE - sizeof(struct heap_block_t);
head->free = true;
head->next = NULL;
DEBUG("kheap initialized, head=0x%p, size=%u", head, head->size);
}
void* kmalloc(size_t size)
{
// No size, no memory allocated!
if (!size) return NULL;
struct heap_block_t* curr = head;
while (curr)
{
// Is block free and big enough for us?
if (curr->free && curr->size >= size)
{
// We split the block if it is big enough
if (curr->size > size + sizeof(struct heap_block_t))
{
struct heap_block_t* new_block = (struct heap_block_t*)((uintptr_t)curr + sizeof(struct heap_block_t) + size);
// We have to subtract the size of our block struct
new_block->size = curr->size - size - sizeof(struct heap_block_t);
new_block->free = true;
// Then we chain up the block in the list
new_block->next = curr->next;
curr->next = new_block;
curr->size = size;
}
// Found a good block, we return it
curr->free = false;
return (void*)((uintptr_t)curr + sizeof(struct heap_block_t));
}
// Continue browsing the list if nothing good was found yet
curr = curr->next;
}
// If we're hear it means we didn't have enough memory
// for the block allocation. So we will allocate more..
uintptr_t old_end = end;
kheap_map_page();
struct heap_block_t* block = (struct heap_block_t*)old_end;
block->size = PAGE_SIZE - sizeof(struct heap_block_t);
block->free = false;
block->next = NULL;
// Put the block at the end of the list
curr = head;
while (curr->next)
{
curr = curr->next;
}
curr->next = block;
return (void*)((uintptr_t)block + sizeof(struct heap_block_t));
}
void kfree(void* ptr)
{
// Nothing to free
if (!ptr) return;
// Set it free!
struct heap_block_t* block = (struct heap_block_t*)((uintptr_t)ptr - sizeof(struct heap_block_t));
block->free = true;
}

26
src/mem/heap/kheap.h Normal file
View File

@@ -0,0 +1,26 @@
#ifndef KHEAP_H
#define KHEAP_H
// We need some kind of simple kernel heap to make our linked list
// for the VMM, as we need "malloc" and "free" for that data structure.
// When the kernel heap is ready, we can alloc our VM object linked list
// and then continue working on the VMM.
// 16MB should be enough for some linked lists
#define KHEAP_SIZE (16*1024*1024)
#include <stdbool.h>
#include <stddef.h>
struct heap_block_t
{
size_t size;
bool free;
struct heap_block_t* next;
};
void kheap_init();
void* kmalloc(size_t size);
void kfree(void* ptr);
#endif

122
src/mem/misc/utils.c Normal file
View File

@@ -0,0 +1,122 @@
#include <stddef.h>
#include <stdint.h>
#include <limine.h>
#include "kernel.h"
#include "string/string.h"
// We won't be linked to standard library, but still need the basic mem* functions
// so everything goes allright with the compiler
// We use the "restrict" keyword on pointers so that the compiler knows it can
// do more optimization on them (and as it's a much used function, it's good to
// be able to do that)
void* memcpy(void* restrict dest, const void* restrict src, size_t n)
{
uint8_t* restrict pdest = (uint8_t* restrict)dest;
const uint8_t* restrict psrc = (const uint8_t* restrict)src;
for (size_t i=0; i<n; i++)
{
pdest[i] = psrc[i];
}
return dest;
}
void* memset(void* s, int c, size_t n)
{
uint8_t* p = (uint8_t*)s;
for (size_t i=0; i<n; i++)
{
p[i] = (uint8_t)c;
}
return s;
}
void* memmove(void *dest, const void* src, size_t n)
{
uint8_t* pdest = (uint8_t*)dest;
const uint8_t* psrc = (uint8_t*)src;
if (src > dest)
{
for (size_t i=0; i<n; i++)
{
pdest[i] = psrc[i];
}
} else if (src < dest)
{
for (size_t i=n; i>0; i--)
{
pdest[i-1] = psrc[i-1];
}
}
return dest;
}
int memcmp(const void* s1, const void* s2, size_t n)
{
const uint8_t* p1 = (const uint8_t*)s1;
const uint8_t* p2 = (const uint8_t*)s2;
for (size_t i=0; i<n; i++)
{
if (p1[i] != p2[i])
{
return p1[i] < p2[i] ? -1 : 1;
}
}
return 0;
}
// Display the memmap so we see how the memory is laid out at handoff
void memmap_display(struct limine_memmap_response* response)
{
DEBUG("Got memory map from Limine: revision %u, %u entries", response->revision, response->entry_count);
for (size_t i=0; i<response->entry_count; i++)
{
struct limine_memmap_entry* entry = response->entries[i];
char type[32] = {0};
switch(entry->type)
{
case LIMINE_MEMMAP_USABLE:
strcpy(type, "USABLE");
break;
case LIMINE_MEMMAP_RESERVED:
strcpy(type, "RESERVED");
break;
case LIMINE_MEMMAP_ACPI_RECLAIMABLE:
strcpy(type, "ACPI_RECLAIMABLE");
break;
case LIMINE_MEMMAP_ACPI_NVS:
strcpy(type, "ACPI_NVS");
break;
case LIMINE_MEMMAP_BAD_MEMORY:
strcpy(type, "BAD_MEMORY");
break;
case LIMINE_MEMMAP_BOOTLOADER_RECLAIMABLE:
strcpy(type, "BOOTLOADER_RECLAIMABLE");
break;
case LIMINE_MEMMAP_KERNEL_AND_MODULES:
strcpy(type, "KERNEL_AND_MODULES");
break;
case LIMINE_MEMMAP_FRAMEBUFFER:
strcpy(type, "FRAMEBUFFER");
break;
default:
strcpy(type, "UNKNOWN");
break;
}
DEBUG("entry %02u: [0x%016x | %016u bytes] - %s", i, entry->base, entry->length, type);
}
}
// Display the HHDM
void hhdm_display(struct limine_hhdm_response* hhdm)
{
DEBUG("Got HHDM revision=%u offset=0x%p", hhdm->revision, hhdm->offset);
}

View File

@@ -8,4 +8,7 @@ void* memset(void* s, int c, size_t n);
void* memmove(void *dest, const void* src, size_t n);
int memcmp(const void* s1, const void* s2, size_t n);
void memmap_display(struct limine_memmap_response* response);
void hhdm_display(struct limine_hhdm_response* hhdm);
#endif

159
src/mem/paging/paging.c Normal file
View File

@@ -0,0 +1,159 @@
#include "paging.h"
#include "pmm.h"
#include <kernel.h>
#include <stddef.h>
#include <limine.h>
/*
Paging on x86 uses four different page table levels:
cr3 register contains the phys address for the PML4 (root directory)
Each directory/table is made of 512 entries, each one uint64_t
Each of these entries have special bits (PRESENT/WRITEABLE/USER/etc.)
that dictates their attributes. Also these bits fall back on children tables.
If we use 1GB huge pages: PML4 -> PDPT -> 1gb pages
2MB huge pages: PML4 -> PDPT -> PD -> 2mb pages
4KB (regular size): PML4 -> PDPT -> PD -> PT -> 4kb pages
*/
static inline void load_cr3(uint64_t value) {
asm volatile ("mov %0, %%cr3" :: "r"(value) : "memory");
}
// To flush TLB
static inline void invlpg(void *addr)
{
asm volatile("invlpg (%0)" :: "r"(addr) : "memory");
}
// Allocates a 512-entry 64bit page table/directory/whatever (zeroed)
static uint64_t* alloc_page_table()
{
uint64_t* virt = (uint64_t*)PHYS_TO_VIRT(pmm_alloc());
for (size_t i=0; i<512; i++)
{
virt[i] = 0;
}
return virt;
}
// Kernel paging root table, that will be placed in cr3
__attribute__((aligned(4096)))
uint64_t *kernel_pml4;
// Map a page, taking virt and phys address. This will go through the paging structures
// beginning at the given root table, translate the virtual address in indexes in
// page table/directories, and then mapping the correct page table entry with the
// given physical address + flags
void paging_map_page(uint64_t* root_table, uint64_t virt, uint64_t phys, uint64_t flags)
{
virt = PAGE_ALIGN_DOWN(virt);
phys = PAGE_ALIGN_DOWN(phys);
// Translate the virt address into page table indexes
uint64_t pml4_i = PML4_INDEX(virt);
uint64_t pdpt_i = PDPT_INDEX(virt);
uint64_t pd_i = PD_INDEX(virt);
uint64_t pt_i = PT_INDEX(virt);
uint64_t *pdpt, *pd, *pt;
// PML4
// If the entry at index is not present, allocate enough space for it
// then populate the entry with correct addr + flags
if (!(root_table[pml4_i] & PTE_PRESENT))
{
pdpt = alloc_page_table();
root_table[pml4_i] = VIRT_TO_PHYS(pdpt) | PTE_PRESENT | PTE_WRITABLE;
}
else {
pdpt = (uint64_t *)PHYS_TO_VIRT(root_table[pml4_i] & ~0xFFFULL);
}
// PDPT: same here
if (!(pdpt[pdpt_i] & PTE_PRESENT))
{
pd = alloc_page_table();
pdpt[pdpt_i] = VIRT_TO_PHYS(pd) | PTE_PRESENT | PTE_WRITABLE;
}
else {
pd = (uint64_t *)PHYS_TO_VIRT(pdpt[pdpt_i] & ~0xFFFULL);
}
// PD: and here
if (!(pd[pd_i] & PTE_PRESENT))
{
pt = alloc_page_table();
pd[pd_i] = VIRT_TO_PHYS(pt) | PTE_PRESENT | PTE_WRITABLE;
}
else {
pt = (uint64_t *)PHYS_TO_VIRT(pd[pd_i] & ~0xFFFULL);
}
// PT: finally, populate the page table entry
pt[pt_i] = phys | flags | PTE_PRESENT;
// Flush TLB (apply changes)
invlpg((void *)virt);
}
uint64_t kernel_phys_base;
uint64_t kernel_virt_base;
void paging_init(struct limine_kernel_address_response* kaddr, struct limine_framebuffer* fb)
{
// We should map the kernel, GDT, IDT, stack, framebuffer.
// Optionally we could map ACPI tables (we can find them in the Limine memmap)
kernel_phys_base = kaddr->physical_base;
kernel_virt_base = kaddr->virtual_base;
DEBUG("Kernel lives at virt=0x%p phys=0x%p", kernel_virt_base, kernel_phys_base);
kernel_pml4 = alloc_page_table();
// for debug
uint64_t page_count = 0;
// HHDM map first 1 GB using given offset
for (uint64_t i=0; i<0x40000000; i += PAGE_SIZE)
{
//paging_kmap_page(i+hhdm_off, i, PTE_WRITABLE);
paging_map_page(kernel_pml4, i+hhdm_off, i, PTE_WRITABLE);
page_count++;
}
DEBUG("Mapped %u pages for first 1GB (HHDM)", page_count); page_count = 0;
// Map the kernel (according to virt/phys_base given by Limine)
// SOME DAY when we want a safer kernel we should map .text as Read/Exec
// .rodata as Read and .data as Read/Write
// For now who gives a shit, let's RWX all kernel
for (uint64_t i = 0; i < KERNEL_SIZE; i += PAGE_SIZE)
{
//paging_kmap_page(kernel_virt_base+i, kernel_phys_base+i, PTE_WRITABLE);
paging_map_page(kernel_pml4, kernel_virt_base+i, kernel_phys_base+i, PTE_WRITABLE);
page_count++;
}
DEBUG("Mapped %u pages for kernel", page_count); page_count = 0;
// Get the framebuffer phys/virt address, and size
uint64_t fb_virt = (uint64_t)fb->address;
uint64_t fb_phys = VIRT_TO_PHYS(fb_virt);
uint64_t fb_size = fb->pitch * fb->height;
uint64_t fb_pages = (fb_size + PAGE_SIZE-1)/PAGE_SIZE;
// Map the framebuffer (with cache-disable & write-through)
for (uint64_t i=0; i<fb_pages; i++)
{
//paging_kmap_page(fb_virt+i*PAGE_SIZE, fb_phys+i*PAGE_SIZE, PTE_WRITABLE | PTE_PCD | PTE_PWT);
paging_map_page(kernel_pml4, fb_virt+i*PAGE_SIZE, fb_phys+i*PAGE_SIZE, PTE_WRITABLE | PTE_PCD | PTE_PWT);
page_count++;
}
DEBUG("Mapped %u pages for framebuffer", page_count);
// Finally, we load the physical address of our PML4 (root table) into cr3
load_cr3(VIRT_TO_PHYS(kernel_pml4));
DEBUG("cr3 loaded, we're still alive");
}

44
src/mem/paging/paging.h Normal file
View File

@@ -0,0 +1,44 @@
#ifndef PAGING_H
#define PAGING_H
#define PAGE_SIZE 4096
#define BITS_PER_ROW 64
#include <stdint.h>
#include <limine.h>
void paging_init(struct limine_kernel_address_response* kaddr, struct limine_framebuffer* fb);
void paging_map_page(uint64_t* root_table, uint64_t virt, uint64_t phys, uint64_t flags);
extern uint64_t hhdm_off;
#define PHYS_TO_VIRT(x) ((void*)((uintptr_t)(x) + hhdm_off))
#define VIRT_TO_PHYS(x) ((uintptr_t)(x) - hhdm_off)
// Stole it
#define ALIGN_UP(x, align) (((x) + ((align) - 1)) & ~((align) - 1))
#define ALIGN_DOWN(x, align) ((x) & ~((align) - 1))
#define PAGE_ALIGN_DOWN(x) ((x) & ~0xFFFULL)
#define PML4_INDEX(x) (((x) >> 39) & 0x1FF)
#define PDPT_INDEX(x) (((x) >> 30) & 0x1FF)
#define PD_INDEX(x) (((x) >> 21) & 0x1FF)
#define PT_INDEX(x) (((x) >> 12) & 0x1FF)
// Page entry special bits
// Bits set on a parent (directory, table) fall back to their children
#define PTE_PRESENT (1ULL << 0)
#define PTE_WRITABLE (1ULL << 1)
#define PTE_USER (1ULL << 2)
#define PTE_PWT (1ULL << 3)
#define PTE_PCD (1ULL << 4)
#define PTE_HUGE (1ULL << 7)
#define PTE_NOEXEC (1ULL << 63)
// Specified in linker.ld
#define KERNEL_BASE 0xFFFFFFFF80000000ULL
// 2 MB should be enough (as of now, the whole kernel ELF is around 75kb)
#define KERNEL_SIZE 0x200000
#endif

103
src/mem/paging/pmm.c Normal file
View File

@@ -0,0 +1,103 @@
// OMG here we are. I'm cooked.
/*
pmm - Physical Memory Manager
will manage 4kb pages physically
it will probably need to get some info from Limine,
to see which pages are used by kernel/bootloader/mmio/fb etc.
*/
#include "paging.h"
#include <limine.h>
#include <stddef.h>
#include <stdint.h>
#include <kernel.h>
#include "mem/misc/utils.h"
#include "pmm.h"
/*
First we'll have to discover the physical memory layout,
and for that we can use a Limine request.
*/
/*
We will look for the biggest usable physical memory region
and use this for the bitmap. The reserved memory will be ignored.
*/
struct limine_memmap_entry* biggest_entry;
static void pmm_find_biggest_usable_region(struct limine_memmap_response* memmap, struct limine_hhdm_response* hhdm)
{
// Max length of a usable memory region
uint64_t length_max = 0;
uint64_t offset = hhdm->offset;
DEBUG("Usable Memory:");
for (size_t i=0; i<memmap->entry_count; i++)
{
struct limine_memmap_entry* entry = memmap->entries[i];
if (entry->type == LIMINE_MEMMAP_USABLE)
{
DEBUG("0x%p-0x%p mapped at 0x%p-0x%p", entry->base, entry->base+entry->length,
entry->base+offset, entry->base+entry->length+offset);
if (entry->length > length_max)
{
length_max = entry->length;
biggest_entry = entry;
}
}
}
DEBUG("Biggest usable memory region:");
DEBUG("0x%p-0x%p mapped at 0x%p-0x%p", biggest_entry->base, biggest_entry->base + biggest_entry->length,
biggest_entry->base+offset, biggest_entry->base+biggest_entry->length+offset);
}
// Offset from Higher Half Direct Map
uint64_t hhdm_off;
static uintptr_t g_freelist = 0;
uintptr_t pmm_alloc()
{
if (!g_freelist) return 0;
uintptr_t addr = g_freelist;
g_freelist = *(uintptr_t*) PHYS_TO_VIRT(g_freelist);
return addr;
}
void pmm_free(uintptr_t addr)
{
*(uintptr_t*) PHYS_TO_VIRT(addr) = g_freelist;
g_freelist = addr;
}
static void pmm_init_freelist()
{
// We simply call pmm_free() on each page that is marked USABLE
// in our big memory region.
uint64_t base = ALIGN_UP(biggest_entry->base, PAGE_SIZE);
uint64_t end = ALIGN_DOWN(biggest_entry->base + biggest_entry->length, PAGE_SIZE);
uint64_t page_count=0;
for (uint64_t addr = base; addr < end; addr += PAGE_SIZE)
{
pmm_free(addr);
//DEBUG("page %u lives at phys 0x%p (virt 0x%p)", page_count, addr, PHYS_TO_VIRT(addr));
page_count++;
}
DEBUG("%u frames in freelist, available for use (%u bytes)", page_count, page_count*PAGE_SIZE);
}
void pmm_init(struct limine_memmap_response* memmap, struct limine_hhdm_response* hhdm)
{
hhdm_off = hhdm->offset;
pmm_find_biggest_usable_region(memmap, hhdm);
//pmm_allocate_bitmap(hhdm); too complicated for my small brain
// Now we have biggest USABLE region,
// so to populate the free list we just iterate through it
pmm_init_freelist();
}

10
src/mem/paging/pmm.h Normal file
View File

@@ -0,0 +1,10 @@
#ifndef PAGING_PMM_H
#define PAGING_PMM_H
#include <limine.h>
void pmm_init(struct limine_memmap_response* memmap, struct limine_hhdm_response* hhdm);
void pmm_free(uintptr_t addr);
uintptr_t pmm_alloc();
#endif

66
src/mem/paging/vmm.c Normal file
View File

@@ -0,0 +1,66 @@
/*
The VMM (virtual memory manager) will have two roles:
- mapping pages
- unmapping pages
in a specified virtual space
compared to the PMM which allocs/frees 4kb frames ("physical pages").
*/
#include "vmm.h"
#include "paging.h"
#include <stddef.h>
#include "pmm.h"
#include <kernel.h>
void* vmm_pt_root = 0;
// Linked list head for virtual memory objects
struct vm_object* vm_objs = NULL;
uint64_t convert_x86_vm_flags(size_t flags)
{
uint64_t value = 0;
if (flags & VM_FLAG_WRITE)
{
value |= PTE_WRITABLE;
}
if (flags & VM_FLAG_USER)
{
value |= PTE_USER;
}
if ((flags & VM_FLAG_EXEC) == 0)
{
value |= PTE_NOEXEC;
}
return value;
}
extern uint64_t *kernel_pml4;
void vmm_setup_pt_root()
{
// We alloc a physical page (frame) for the pointer, then map it
// to virt (pointer)
uintptr_t phys = pmm_alloc();
vmm_pt_root = (void*)kernel_pml4;
paging_map_page(kernel_pml4, (uint64_t)vmm_pt_root, phys, convert_x86_vm_flags(VM_FLAG_WRITE | VM_FLAG_EXEC));
DEBUG("VMM setup: vmm_pt_root=0x%p (phys=0x%p)", vmm_pt_root, phys);
}
/* void* vmm_alloc(size_t length, size_t flags)
{
// We will try to allocate at least length bytes, which have to be rounded UP to
// the next page so its coherent with the PMM
size_t len = ALIGN_UP(length, PAGE_SIZE);
// Need to implement this (as linked list)
// but for now kernel heap is sufficient
// The VMM will prob be more useful when we have userspace
} */
void vmm_init()
{
vmm_setup_pt_root();
}

29
src/mem/paging/vmm.h Normal file
View File

@@ -0,0 +1,29 @@
#ifndef VMM_H
#define VMM_H
#include <stdint.h>
#include <stddef.h>
/*
This will be our linked list of virtual memory objects.
Flags here aren't x86 flags, they are platform-agnostic
kernel-defined flags.
*/
struct vm_object
{
uintptr_t base;
size_t length;
size_t flags;
struct vm_object* next;
};
// Flags bitfield
#define VM_FLAG_NONE 0
#define VM_FLAG_WRITE (1 << 0)
#define VM_FLAG_EXEC (1 << 1)
#define VM_FLAG_USER (1 << 2)
void vmm_init();
#endif

View File

@@ -1,70 +0,0 @@
#include <stddef.h>
#include <stdint.h>
// We won't be linked to standard library, but still need the basic mem* functions
// so everything goes allright with the compiler
// We use the "restrict" keyword on pointers so that the compiler knows it can
// do more optimization on them (and as it's a much used function, it's good to
// be able to do that)
void* memcpy(void* restrict dest, const void* restrict src, size_t n)
{
uint8_t* restrict pdest = (uint8_t* restrict)dest;
const uint8_t* restrict psrc = (const uint8_t* restrict)src;
for (size_t i=0; i<n; i++)
{
pdest[i] = psrc[i];
}
return dest;
}
void* memset(void* s, int c, size_t n)
{
uint8_t* p = (uint8_t*)s;
for (size_t i=0; i<n; i++)
{
p[i] = (uint8_t)c;
}
return s;
}
void* memmove(void *dest, const void* src, size_t n)
{
uint8_t* pdest = (uint8_t*)dest;
const uint8_t* psrc = (uint8_t*)src;
if (src > dest)
{
for (size_t i=0; i<n; i++)
{
pdest[i] = psrc[i];
}
} else if (src < dest)
{
for (size_t i=n; i>0; i--)
{
pdest[i-1] = psrc[i-1];
}
}
return dest;
}
int memcmp(const void* s1, const void* s2, size_t n)
{
const uint8_t* p1 = (const uint8_t*)s1;
const uint8_t* p2 = (const uint8_t*)s2;
for (size_t i=0; i<n; i++)
{
if (p1[i] != p2[i])
{
return p1[i] < p2[i] ? -1 : 1;
}
}
return 0;
}

6
src/string/string.c Normal file
View File

@@ -0,0 +1,6 @@
char* strcpy(char *dest, const char *src)
{
char *temp = dest;
while((*dest++ = *src++));
return temp;
}

6
src/string/string.h Normal file
View File

@@ -0,0 +1,6 @@
#ifndef STRING_H
#define STRING_H
char *strcpy(char *dest, const char *src);
#endif

View File

@@ -1,5 +1,6 @@
#include <stdint.h>
#include "../io/serial.h"
#include "io/serial/serial.h"
#include <kernel.h>
/*
For now, the timer module will be using the PIC.
@@ -64,6 +65,17 @@ void pit_init()
outb(0x40, (divisor >> 8) & 0xFF);
}
// Wait n ticks
// Given that there's a tick every 1ms, wait n milliseconds
void timer_wait(uint64_t wait_ticks)
{
uint64_t then = ticks + wait_ticks;
while (ticks < then)
{
asm("hlt");
};
}
void timer_init()
{
// Remapping the PIC, because at startup it conflicts with
@@ -72,4 +84,5 @@ void timer_init()
pic_remap();
pic_enable();
pit_init();
DEBUG("PIT initialized");
}

View File

@@ -2,5 +2,6 @@
#define TIMER_H
void timer_init();
void timer_wait(unsigned int wait_ticks);
#endif