Files
dumb8/cpu.c
2024-10-19 21:25:45 +02:00

438 lines
8.3 KiB
C

/*
* Dumb8 8-bit processing unit
* Made by github.com/xamidev
*
* This is free and unencumbered software released into the public domain.
* For more information, please refer to <http://unlicense.org/>
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#define MEM_SIZE 256
#define NUM_REGISTERS 4
/*
* Instruction set
* Here, we're making a RISC (reduced instruction set computer)
* so we're staying minimalistic.
*/
typedef enum
{
// 0x00 -> No operation
NOP = 0,
// 0xA? -> Memory operations
MOV = 0xA0,
// 0xB? -> Arithmetic operations
ADD = 0xB0,
SUB = 0xB1,
// 0xC? -> Bitwise operations
OR = 0xC0,
AND = 0xC1,
XOR = 0xC2,
// 0xD? -> Input/output operations
OUT = 0xD0,
IN = 0xD1,
// 0xE? -> Jump and comparisons
JMP = 0xE0,
JEQ = 0xE1,
CMP = 0xE2,
// 0xF? -> Misc operations
HLT = 0xFF
} instruction_set_t;
/*
* CPU structure definition
* Contains 4 8-bit registers, memory, a program counter, a halt switch, and flags.
*/
typedef struct
{
uint8_t reg[NUM_REGISTERS];
uint8_t memory[MEM_SIZE];
uint16_t pc;
bool halted;
bool equal_flag;
int flag_clear_delay;
} CPU_t;
CPU_t cpu;
/*
* Initializing the CPU: program counter and registers to zero, halted flag to false.
*/
void cpu_init()
{
printf("Initializing Dumb8 CPU...\n");
cpu.pc = 0;
cpu.halted = false;
cpu.equal_flag = false;
cpu.flag_clear_delay = 0;
for (size_t i=0; i<NUM_REGISTERS; i++)
{
cpu.reg[i] = 0;
}
}
/*
* Executing an instruction: this is the equivalent of the ALU in a higher-level point of view
*/
void cpu_exec(uint8_t opcode)
{
uint8_t reg1, reg2, addr;
if (cpu.flag_clear_delay > 0)
{
cpu.flag_clear_delay--;
if (cpu.flag_clear_delay == 0)
{
cpu.equal_flag = false;
}
}
switch (opcode)
{
// Some lines are repeating.. Should make this a better way..
case NOP:
break;
case MOV:
reg1 = cpu.memory[cpu.pc++];
reg2 = cpu.memory[cpu.pc++];
cpu.reg[reg1] = cpu.reg[reg2];
break;
case ADD:
reg1 = cpu.memory[cpu.pc++];
reg2 = cpu.memory[cpu.pc++];
cpu.reg[reg1] += cpu.reg[reg2];
break;
case SUB:
reg1 = cpu.memory[cpu.pc++];
reg2 = cpu.memory[cpu.pc++];
cpu.reg[reg1] -= cpu.reg[reg2];
break;
case OR:
reg1 = cpu.memory[cpu.pc++];
reg2 = cpu.memory[cpu.pc++];
cpu.reg[reg1] |= cpu.reg[reg2];
break;
case AND:
reg1 = cpu.memory[cpu.pc++];
reg2 = cpu.memory[cpu.pc++];
cpu.reg[reg1] &= cpu.reg[reg2];
break;
case XOR:
reg1 = cpu.memory[cpu.pc++];
reg2 = cpu.memory[cpu.pc++];
cpu.reg[reg1] ^= cpu.reg[reg2];
break;
case HLT:
cpu.halted = true;
break;
case JMP:
addr = cpu.memory[cpu.pc++];
cpu.pc = addr;
break;
case JEQ:
reg1 = cpu.memory[cpu.pc++];
addr = cpu.memory[cpu.pc++];
if (cpu.equal_flag) {
cpu.pc = addr;
}
break;
case CMP:
reg1 = cpu.memory[cpu.pc++];
reg2 = cpu.memory[cpu.pc++];
cpu.equal_flag = (cpu.reg[reg1] == cpu.reg[reg2]);
cpu.flag_clear_delay = 2;
break;
case OUT:
reg1 = cpu.memory[cpu.pc++];
putchar(cpu.reg[reg1]);
break;
case IN:
reg1 = cpu.memory[cpu.pc++];
cpu.reg[reg1] = getchar();
break;
default:
printf("Unknown instruction: 0x%02X\n", opcode);
cpu.halted = true;
break;
}
}
/*
* Loading the program in memory
*/
void cpu_load(const uint8_t* program, size_t size)
{
for (size_t i=0; i<size; i++)
{
cpu.memory[i] = program[i];
}
}
/*
* Reading the assembly file and writing its instructions in
* opcode format in memory
*/
void assemble(const char* filename)
{
FILE* fp = fopen(filename, "r");
if (!fp)
{
printf("Cannot read file '%s'\n", filename);
exit(1);
}
char line[256] = {0};
size_t mem_index = 0;
while (fgets(line, sizeof(line), fp))
{
char instruction[10] = {0};
char reg1[10] = {0};
char reg2[10] = {0};
int addr;
if (strncmp(line, ";", 1) == 0)
{
// comment, ignore
continue;
}
else if (sscanf(line, "%s %[^,], %s", instruction, reg1, reg2) == 3)
{
//printf("SS1");
int reg1_n = reg1[1] - '0';
int reg2_n = reg2[1] - '0';
if (strncmp(instruction, "MOV", 3) == 0)
{
cpu.memory[mem_index++] = MOV;
cpu.memory[mem_index++] = reg1_n;
cpu.memory[mem_index++] = reg2_n;
} else if (strncmp(instruction, "ADD", 3) == 0)
{
cpu.memory[mem_index++] = ADD;
cpu.memory[mem_index++] = reg1_n;
cpu.memory[mem_index++] = reg2_n;
} else if (strncmp(instruction, "CMP", 3) == 0)
{
cpu.memory[mem_index++] = CMP;
cpu.memory[mem_index++] = reg1_n;
cpu.memory[mem_index++] = reg2_n;
} else if (strncmp(instruction, "SUB", 3) == 0)
{
cpu.memory[mem_index++] = SUB;
cpu.memory[mem_index++] = reg1_n;
cpu.memory[mem_index++] = reg2_n;
}
else if (strncmp(instruction, "OR", 2) == 0)
{
cpu.memory[mem_index++] = OR;
cpu.memory[mem_index++] = reg1_n;
cpu.memory[mem_index++] = reg2_n;
}
else if (strncmp(instruction, "AND", 3) == 0)
{
cpu.memory[mem_index++] = AND;
cpu.memory[mem_index++] = reg1_n;
cpu.memory[mem_index++] = reg2_n;
}
else if (strncmp(instruction, "XOR", 3) == 0)
{
cpu.memory[mem_index++] = XOR;
cpu.memory[mem_index++] = reg1_n;
cpu.memory[mem_index++] = reg2_n;
}
} else if (sscanf(line, "%s %[^,], %d", instruction, reg1, &addr) == 2)
{
//printf("SS2");
int reg1_n = reg1[1] - '0';
if (strncmp(instruction, "JEQ", 3) == 0)
{
cpu.memory[mem_index++] = JEQ;
cpu.memory[mem_index++] = reg1_n;
cpu.memory[mem_index++] = addr;
}
else if (sscanf(line, "%s %d", instruction, &addr) == 2)
{
//printf("SS3");
if (strncmp(instruction, "JMP", 3) == 0)
{
cpu.memory[mem_index++] = JMP;
cpu.memory[mem_index++] = addr;
}
}
else if (sscanf(line, "%s %s", instruction, reg1) == 2)
{
//printf("SS4");
int reg1_n = reg1[1] - '0';
if (strncmp(instruction, "OUT", 3) == 0)
{
cpu.memory[mem_index++] = OUT;
cpu.memory[mem_index++] = reg1_n;
}
if (strncmp(instruction, "IN", 2) == 0)
{
cpu.memory[mem_index++] = IN;
cpu.memory[mem_index++] = reg1_n;
}
}
}
else if (strncmp(line, "HLT", 3) == 0)
{
cpu.memory[mem_index++] = HLT;
}
else if (strncmp(line, "NOP", 3) == 0)
{
cpu.memory[mem_index++] = NOP;
}
}
fclose(fp);
}
/*
* Running the program, incrementing the program counter for each instruction ran
*/
void cpu_run()
{
printf("\n[BEGIN CPU OUTPUT]\n");
while (!cpu.halted)
{
uint8_t opcode = cpu.memory[cpu.pc++];
cpu_exec(opcode);
}
printf("\n[END CPU OUTPUT]\n");
}
/*
* Dumping the CPU information, registers and flags
*/
void cpu_dump()
{
printf("\n*** CPU state dump ***\nPC: 0x%x\nEqual flag: %d\nHalted: %d\n\n", cpu.pc, cpu.equal_flag, cpu.halted);
for (size_t i=0; i<NUM_REGISTERS; i++)
{
printf("R%d: 0x%x\n", i, cpu.reg[i]);
}
puts("");
}
/*
* Dumping the memory contents
*/
void mem_dump()
{
printf("\n*** Memory dump ***\n");
for (size_t i=0; i<MEM_SIZE; i++)
{
if (i%20 == 0)
{
puts("");
}
switch (cpu.memory[i])
{
// Instructions (colored background)
case 0xa0:
printf("\e[42m%02x\e[0m ", cpu.memory[i]);
break;
case 0xb0:
case 0xb1:
printf("\e[43m%02x\e[0m ", cpu.memory[i]);
break;
case 0xc0:
case 0xc1:
case 0xc2:
printf("\e[45m%02x\e[0m ", cpu.memory[i]);
break;
case 0xd0:
printf("\e[46m%02x\e[0m ", cpu.memory[i]);
break;
case 0xe0:
case 0xe1:
case 0xe2:
printf("\e[44m%02x\e[0m ", cpu.memory[i]);
break;
case 0xff:
printf("\e[41m%02x\e[0m ", cpu.memory[i]);
break;
// General purpose registers (colored foreground)
case 0x01:
case 0x02:
case 0x03:
case 0x04:
printf("\e[36m%02x\e[0m ", cpu.memory[i]);
break;
default:
printf("%02x ", cpu.memory[i]);
break;
}
}
puts("");
}
/*
* Write to register: useful for debugging and testing
*/
void reg_write(int index, uint8_t val)
{
cpu.reg[index] = val;
}
int main(int argc, char* argv[])
{
cpu_init();
if (argc < 2)
{
printf("Usage: %s <assembly file>\n", argv[0]);
return -1;
}
assemble(argv[1]);
// Dumping our program
mem_dump();
reg_write(1, 0x68);
reg_write(2, 0x69);
reg_write(3, 0x21);
cpu_run();
// Post-mortem analysis
cpu_dump();
return 0;
}