7 Commits

20 changed files with 686 additions and 17 deletions

View File

@@ -1,8 +1,8 @@
SOURCES = src/io/kbd/ps2.c src/io/serial/serial.c src/io/term/printf.c src/io/term/term.c src/idt/idt.c src/mem/gdt/gdt.c src/mem/misc/utils.c src/time/timer.c src/kmain.c
SOURCES = src/mem/heap/kheap.c src/mem/paging/vmm.c src/mem/paging/paging.c src/mem/paging/pmm.c src/string/string.c src/io/kbd/ps2.c src/io/serial/serial.c src/io/term/printf.c src/io/term/term.c src/idt/idt.c src/mem/gdt/gdt.c src/mem/misc/utils.c src/time/timer.c src/kmain.c
build:
rm -f *.o
x86_64-elf-gcc -g -c -I src $(SOURCES) -Wall -Wextra -std=gnu99 -nostdlib -ffreestanding -fno-stack-protector -fno-stack-check -fno-PIC -ffunction-sections -fdata-sections -mcmodel=kernel
x86_64-elf-gcc -g -c -Isrc $(SOURCES) -Wall -Wextra -std=gnu99 -nostdlib -ffreestanding -fno-stack-protector -fno-stack-check -fno-PIC -ffunction-sections -fdata-sections -mcmodel=kernel
objcopy -O elf64-x86-64 -B i386 -I binary zap-light16.psf zap-light16.o
nasm -f elf64 src/idt/idt.S -o idt_stub.o
x86_64-elf-ld -o pepperk -T linker.ld *.o
@@ -30,7 +30,7 @@ build-iso: limine/limine build
./limine/limine bios-install pepper.iso
debug:
qemu-system-x86_64 -drive file=pepper.iso -s -S -d int -no-reboot &
qemu-system-x86_64 -drive file=pepper.iso -s -S -d int -no-reboot -no-shutdown &
gdb pepperk --command=debug.gdb
run: build-iso

View File

@@ -1,8 +1,8 @@
#include "idt.h"
#include <stdint.h>
#include <stddef.h>
#include "../io/serial/serial.h"
#include "../io/kbd/ps2.h"
#include "io/serial/serial.h"
#include "io/kbd/ps2.h"
#include <kernel.h>
struct interrupt_descriptor idt[256];

View File

@@ -1,9 +1,9 @@
// PS/2 Keyboard support
#include "../serial/serial.h"
#include "io/serial/serial.h"
#include "ps2.h"
#include <stdint.h>
#include "../term/term.h"
#include "io/term/term.h"
#include <kernel.h>
// The key status bitfield will be used to see if ALT, CONTROL, or SHIFT is pressed

View File

@@ -1,4 +1,9 @@
// Terminal output
/*
There are a couple of bugs here and there but for now I don't care too much
because this shitty implementation will be replaced one day by Flanterm
(once memory management is okay: paging & kernel malloc)
*/
#include <limine.h>
#include <stddef.h>

View File

@@ -13,9 +13,11 @@ enum ErrorCodes
#include "io/serial/serial.h"
#include "io/term/printf.h"
// Still lacks print formatting...
#define DEBUG(log, ...) \
printf("debug: [%s]: " log "\n", __FILE__, ##__VA_ARGS__); \
fctprintf((void*)&skputc, 0, "debug: [%s]: %s\n", __FILE__, log)
#define DEBUG(log, ...) fctprintf((void*)&skputc, 0, "debug: [%s]: " log "\r\n", __FILE__, ##__VA_ARGS__)
// printf("debug: [%s]: " log "\n", __FILE__, ##__VA_ARGS__);
void hcf();
#define assert(check) do { if(!(check)) hcf(); } while(0)
#endif

View File

@@ -10,6 +10,10 @@
#include "kernel.h"
#include "time/timer.h"
#include "io/kbd/ps2.h"
#include "mem/paging/pmm.h"
#include "mem/paging/paging.h"
#include "mem/paging/vmm.h"
#include "mem/heap/kheap.h"
// Limine version used
__attribute__((used, section(".limine_requests")))
@@ -22,6 +26,27 @@ static volatile struct limine_framebuffer_request framebuffer_request = {
.revision = 0
};
// Memory map request
__attribute__((used, section(".limine_requests")))
static volatile struct limine_memmap_request memmap_request = {
.id = LIMINE_MEMMAP_REQUEST,
.revision = 0
};
// Higher Half Direct Map
__attribute__((used, section(".limine_requests")))
static volatile struct limine_hhdm_request hhdm_request = {
.id = LIMINE_HHDM_REQUEST,
.revision = 0
};
// Executable Address/Kernel Address (find base phys/virt address of kernel)
__attribute__((used, section(".limine_requests")))
static volatile struct limine_kernel_address_request kerneladdr_request = {
.id = LIMINE_KERNEL_ADDRESS_REQUEST,
.revision = 0
};
__attribute__((used, section(".limine_requests_start")))
static volatile LIMINE_REQUESTS_START_MARKER;
@@ -30,8 +55,8 @@ static volatile LIMINE_REQUESTS_END_MARKER;
struct limine_framebuffer* framebuffer;
// Panic
static void hcf()
// Panic (should dump registers etc. in the future)
void hcf()
{
for (;;)
{
@@ -45,23 +70,50 @@ void kmain()
if (!LIMINE_BASE_REVISION_SUPPORTED) hcf();
if (framebuffer_request.response == NULL || framebuffer_request.response->framebuffer_count < 1) hcf();
// We should probably grab all the boot info in a boot context struct
// that would be a bit cleaner than this mess
// Get the first framebuffer from the response
framebuffer = framebuffer_request.response->framebuffers[0];
term_init();
serial_init();
if (memmap_request.response == NULL) hcf();
memmap_display(memmap_request.response);
if (hhdm_request.response == NULL) hcf();
hhdm_display(hhdm_request.response);
if (kerneladdr_request.response == NULL) hcf();
DEBUG("kernel: phys_base=0x%p virt_base=0x%p", kerneladdr_request.response->physical_base, kerneladdr_request.response->virtual_base);
CLEAR_INTERRUPTS;
gdt_init();
idt_init();
timer_init();
SET_INTERRUPTS;
pmm_init(memmap_request.response, hhdm_request.response);
// Remap kernel , HHDM and framebuffer
paging_init(kerneladdr_request.response, framebuffer);
kheap_init();
void* ptr = kmalloc(10); DEBUG("(KMALLOC TEST) Allocated 10 bytes at 0x%p", ptr);
void* ptr2 = kmalloc(200); DEBUG("(KMALLOC TEST) Allocated 200 bytes at 0x%p", ptr2);
kfree(ptr);
void* ptr3 = kmalloc(5); DEBUG("(KMALLOC TEST) Allocated 5 bytes at 0x%p", ptr3);
vmm_init();
keyboard_init(FR);
term_init();
// Draw something
printf("%s, %s!\n", "Hello", "world");
// Yoohoooooo!
DEBUG("kernel initialized successfully! hanging... wow=%d", 42);
//DEBUG("kernel initialized successfully! hanging... wow=%d", 42);
printf("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non justo a magna bibendum auctor viverra rutrum diam. In hac habitasse platea dictumst. Vestibulum suscipit ipsum eget tortor maximus lobortis. Donec vel ipsum id lacus fringilla bibendum id eget risus. Fusce vestibulum diam sit amet nunc ultricies, nec rutrum nibh congue. Donec fringilla a dui sit amet ullamcorper. Donec pharetra quis tortor id congue. Aliquam erat volutpat. Duis suscipit nulla vel ligula iaculis, in gravida mauris pellentesque. Vestibulum nunc nisl, posuere eu eros et, dictum molestie dolor. Donec posuere laoreet hendrerit. Suspendisse potenti. Proin fringilla vehicula malesuada. Quisque a dui est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Curabitur nec aliquam lacus, at lacinia enim. ");
hcf();
}

View File

@@ -1,6 +1,6 @@
#include "gdt.h"
#include <stdint.h>
#include "../../io/serial/serial.h"
#include "io/serial/serial.h"
#include <kernel.h>
// Descriptors are 8-byte wide (64bits)

106
src/mem/heap/kheap.c Normal file
View File

@@ -0,0 +1,106 @@
#include "kheap.h"
#include "mem/paging/paging.h"
#include "mem/paging/pmm.h"
#include <stddef.h>
#include <kernel.h>
extern uint64_t kernel_phys_base;
extern uint64_t kernel_virt_base;
uintptr_t kheap_start;
static struct heap_block_t* head = NULL;
static uintptr_t end;
// Kernel root table (level 4)
extern uint64_t *kernel_pml4;
static void kheap_map_page()
{
uintptr_t phys = pmm_alloc();
paging_map_page(kernel_pml4, end, phys, PTE_PRESENT | PTE_WRITABLE | PTE_NOEXEC);
end += PAGE_SIZE;
DEBUG("Mapped first kheap page");
}
void kheap_init()
{
kheap_start = ALIGN_UP(kernel_virt_base + KERNEL_SIZE, PAGE_SIZE);
end = kheap_start;
// At least 1 page must be mapped for it to work
kheap_map_page();
// Give linked list head its properties
head = (struct heap_block_t*)kheap_start;
head->size = PAGE_SIZE - sizeof(struct heap_block_t);
head->free = true;
head->next = NULL;
DEBUG("kheap initialized, head=0x%p, size=%u", head, head->size);
}
void* kmalloc(size_t size)
{
// No size, no memory allocated!
if (!size) return NULL;
struct heap_block_t* curr = head;
while (curr)
{
// Is block free and big enough for us?
if (curr->free && curr->size >= size)
{
// We split the block if it is big enough
if (curr->size > size + sizeof(struct heap_block_t))
{
struct heap_block_t* new_block = (struct heap_block_t*)((uintptr_t)curr + sizeof(struct heap_block_t) + size);
// We have to subtract the size of our block struct
new_block->size = curr->size - size - sizeof(struct heap_block_t);
new_block->free = true;
// Then we chain up the block in the list
new_block->next = curr->next;
curr->next = new_block;
curr->size = size;
}
// Found a good block, we return it
curr->free = false;
return (void*)((uintptr_t)curr + sizeof(struct heap_block_t));
}
// Continue browsing the list if nothing good was found yet
curr = curr->next;
}
// If we're hear it means we didn't have enough memory
// for the block allocation. So we will allocate more..
uintptr_t old_end = end;
kheap_map_page();
struct heap_block_t* block = (struct heap_block_t*)old_end;
block->size = PAGE_SIZE - sizeof(struct heap_block_t);
block->free = false;
block->next = NULL;
// Put the block at the end of the list
curr = head;
while (curr->next)
{
curr = curr->next;
}
curr->next = block;
return (void*)((uintptr_t)block + sizeof(struct heap_block_t));
}
void kfree(void* ptr)
{
// Nothing to free
if (!ptr) return;
// Set it free!
struct heap_block_t* block = (struct heap_block_t*)((uintptr_t)ptr - sizeof(struct heap_block_t));
block->free = true;
}

26
src/mem/heap/kheap.h Normal file
View File

@@ -0,0 +1,26 @@
#ifndef KHEAP_H
#define KHEAP_H
// We need some kind of simple kernel heap to make our linked list
// for the VMM, as we need "malloc" and "free" for that data structure.
// When the kernel heap is ready, we can alloc our VM object linked list
// and then continue working on the VMM.
// 16MB should be enough for some linked lists
#define KHEAP_SIZE (16*1024*1024)
#include <stdbool.h>
#include <stddef.h>
struct heap_block_t
{
size_t size;
bool free;
struct heap_block_t* next;
};
void kheap_init();
void* kmalloc(size_t size);
void kfree(void* ptr);
#endif

View File

@@ -1,5 +1,8 @@
#include <stddef.h>
#include <stdint.h>
#include <limine.h>
#include "kernel.h"
#include "string/string.h"
// We won't be linked to standard library, but still need the basic mem* functions
// so everything goes allright with the compiler
@@ -68,3 +71,52 @@ int memcmp(const void* s1, const void* s2, size_t n)
return 0;
}
// Display the memmap so we see how the memory is laid out at handoff
void memmap_display(struct limine_memmap_response* response)
{
DEBUG("Got memory map from Limine: revision %u, %u entries", response->revision, response->entry_count);
for (size_t i=0; i<response->entry_count; i++)
{
struct limine_memmap_entry* entry = response->entries[i];
char type[32] = {0};
switch(entry->type)
{
case LIMINE_MEMMAP_USABLE:
strcpy(type, "USABLE");
break;
case LIMINE_MEMMAP_RESERVED:
strcpy(type, "RESERVED");
break;
case LIMINE_MEMMAP_ACPI_RECLAIMABLE:
strcpy(type, "ACPI_RECLAIMABLE");
break;
case LIMINE_MEMMAP_ACPI_NVS:
strcpy(type, "ACPI_NVS");
break;
case LIMINE_MEMMAP_BAD_MEMORY:
strcpy(type, "BAD_MEMORY");
break;
case LIMINE_MEMMAP_BOOTLOADER_RECLAIMABLE:
strcpy(type, "BOOTLOADER_RECLAIMABLE");
break;
case LIMINE_MEMMAP_KERNEL_AND_MODULES:
strcpy(type, "KERNEL_AND_MODULES");
break;
case LIMINE_MEMMAP_FRAMEBUFFER:
strcpy(type, "FRAMEBUFFER");
break;
default:
strcpy(type, "UNKNOWN");
break;
}
DEBUG("entry %02u: [0x%016x | %016u bytes] - %s", i, entry->base, entry->length, type);
}
}
// Display the HHDM
void hhdm_display(struct limine_hhdm_response* hhdm)
{
DEBUG("Got HHDM revision=%u offset=0x%p", hhdm->revision, hhdm->offset);
}

View File

@@ -8,4 +8,7 @@ void* memset(void* s, int c, size_t n);
void* memmove(void *dest, const void* src, size_t n);
int memcmp(const void* s1, const void* s2, size_t n);
void memmap_display(struct limine_memmap_response* response);
void hhdm_display(struct limine_hhdm_response* hhdm);
#endif

159
src/mem/paging/paging.c Normal file
View File

@@ -0,0 +1,159 @@
#include "paging.h"
#include "pmm.h"
#include <kernel.h>
#include <stddef.h>
#include <limine.h>
/*
Paging on x86 uses four different page table levels:
cr3 register contains the phys address for the PML4 (root directory)
Each directory/table is made of 512 entries, each one uint64_t
Each of these entries have special bits (PRESENT/WRITEABLE/USER/etc.)
that dictates their attributes. Also these bits fall back on children tables.
If we use 1GB huge pages: PML4 -> PDPT -> 1gb pages
2MB huge pages: PML4 -> PDPT -> PD -> 2mb pages
4KB (regular size): PML4 -> PDPT -> PD -> PT -> 4kb pages
*/
static inline void load_cr3(uint64_t value) {
asm volatile ("mov %0, %%cr3" :: "r"(value) : "memory");
}
// To flush TLB
static inline void invlpg(void *addr)
{
asm volatile("invlpg (%0)" :: "r"(addr) : "memory");
}
// Allocates a 512-entry 64bit page table/directory/whatever (zeroed)
static uint64_t* alloc_page_table()
{
uint64_t* virt = (uint64_t*)PHYS_TO_VIRT(pmm_alloc());
for (size_t i=0; i<512; i++)
{
virt[i] = 0;
}
return virt;
}
// Kernel paging root table, that will be placed in cr3
__attribute__((aligned(4096)))
uint64_t *kernel_pml4;
// Map a page, taking virt and phys address. This will go through the paging structures
// beginning at the given root table, translate the virtual address in indexes in
// page table/directories, and then mapping the correct page table entry with the
// given physical address + flags
void paging_map_page(uint64_t* root_table, uint64_t virt, uint64_t phys, uint64_t flags)
{
virt = PAGE_ALIGN_DOWN(virt);
phys = PAGE_ALIGN_DOWN(phys);
// Translate the virt address into page table indexes
uint64_t pml4_i = PML4_INDEX(virt);
uint64_t pdpt_i = PDPT_INDEX(virt);
uint64_t pd_i = PD_INDEX(virt);
uint64_t pt_i = PT_INDEX(virt);
uint64_t *pdpt, *pd, *pt;
// PML4
// If the entry at index is not present, allocate enough space for it
// then populate the entry with correct addr + flags
if (!(root_table[pml4_i] & PTE_PRESENT))
{
pdpt = alloc_page_table();
root_table[pml4_i] = VIRT_TO_PHYS(pdpt) | PTE_PRESENT | PTE_WRITABLE;
}
else {
pdpt = (uint64_t *)PHYS_TO_VIRT(root_table[pml4_i] & ~0xFFFULL);
}
// PDPT: same here
if (!(pdpt[pdpt_i] & PTE_PRESENT))
{
pd = alloc_page_table();
pdpt[pdpt_i] = VIRT_TO_PHYS(pd) | PTE_PRESENT | PTE_WRITABLE;
}
else {
pd = (uint64_t *)PHYS_TO_VIRT(pdpt[pdpt_i] & ~0xFFFULL);
}
// PD: and here
if (!(pd[pd_i] & PTE_PRESENT))
{
pt = alloc_page_table();
pd[pd_i] = VIRT_TO_PHYS(pt) | PTE_PRESENT | PTE_WRITABLE;
}
else {
pt = (uint64_t *)PHYS_TO_VIRT(pd[pd_i] & ~0xFFFULL);
}
// PT: finally, populate the page table entry
pt[pt_i] = phys | flags | PTE_PRESENT;
// Flush TLB (apply changes)
invlpg((void *)virt);
}
uint64_t kernel_phys_base;
uint64_t kernel_virt_base;
void paging_init(struct limine_kernel_address_response* kaddr, struct limine_framebuffer* fb)
{
// We should map the kernel, GDT, IDT, stack, framebuffer.
// Optionally we could map ACPI tables (we can find them in the Limine memmap)
kernel_phys_base = kaddr->physical_base;
kernel_virt_base = kaddr->virtual_base;
DEBUG("Kernel lives at virt=0x%p phys=0x%p", kernel_virt_base, kernel_phys_base);
kernel_pml4 = alloc_page_table();
// for debug
uint64_t page_count = 0;
// HHDM map first 1 GB using given offset
for (uint64_t i=0; i<0x40000000; i += PAGE_SIZE)
{
//paging_kmap_page(i+hhdm_off, i, PTE_WRITABLE);
paging_map_page(kernel_pml4, i+hhdm_off, i, PTE_WRITABLE);
page_count++;
}
DEBUG("Mapped %u pages for first 1GB (HHDM)", page_count); page_count = 0;
// Map the kernel (according to virt/phys_base given by Limine)
// SOME DAY when we want a safer kernel we should map .text as Read/Exec
// .rodata as Read and .data as Read/Write
// For now who gives a shit, let's RWX all kernel
for (uint64_t i = 0; i < KERNEL_SIZE; i += PAGE_SIZE)
{
//paging_kmap_page(kernel_virt_base+i, kernel_phys_base+i, PTE_WRITABLE);
paging_map_page(kernel_pml4, kernel_virt_base+i, kernel_phys_base+i, PTE_WRITABLE);
page_count++;
}
DEBUG("Mapped %u pages for kernel", page_count); page_count = 0;
// Get the framebuffer phys/virt address, and size
uint64_t fb_virt = (uint64_t)fb->address;
uint64_t fb_phys = VIRT_TO_PHYS(fb_virt);
uint64_t fb_size = fb->pitch * fb->height;
uint64_t fb_pages = (fb_size + PAGE_SIZE-1)/PAGE_SIZE;
// Map the framebuffer (with cache-disable & write-through)
for (uint64_t i=0; i<fb_pages; i++)
{
//paging_kmap_page(fb_virt+i*PAGE_SIZE, fb_phys+i*PAGE_SIZE, PTE_WRITABLE | PTE_PCD | PTE_PWT);
paging_map_page(kernel_pml4, fb_virt+i*PAGE_SIZE, fb_phys+i*PAGE_SIZE, PTE_WRITABLE | PTE_PCD | PTE_PWT);
page_count++;
}
DEBUG("Mapped %u pages for framebuffer", page_count);
// Finally, we load the physical address of our PML4 (root table) into cr3
load_cr3(VIRT_TO_PHYS(kernel_pml4));
DEBUG("cr3 loaded, we're still alive");
}

44
src/mem/paging/paging.h Normal file
View File

@@ -0,0 +1,44 @@
#ifndef PAGING_H
#define PAGING_H
#define PAGE_SIZE 4096
#define BITS_PER_ROW 64
#include <stdint.h>
#include <limine.h>
void paging_init(struct limine_kernel_address_response* kaddr, struct limine_framebuffer* fb);
void paging_map_page(uint64_t* root_table, uint64_t virt, uint64_t phys, uint64_t flags);
extern uint64_t hhdm_off;
#define PHYS_TO_VIRT(x) ((void*)((uintptr_t)(x) + hhdm_off))
#define VIRT_TO_PHYS(x) ((uintptr_t)(x) - hhdm_off)
// Stole it
#define ALIGN_UP(x, align) (((x) + ((align) - 1)) & ~((align) - 1))
#define ALIGN_DOWN(x, align) ((x) & ~((align) - 1))
#define PAGE_ALIGN_DOWN(x) ((x) & ~0xFFFULL)
#define PML4_INDEX(x) (((x) >> 39) & 0x1FF)
#define PDPT_INDEX(x) (((x) >> 30) & 0x1FF)
#define PD_INDEX(x) (((x) >> 21) & 0x1FF)
#define PT_INDEX(x) (((x) >> 12) & 0x1FF)
// Page entry special bits
// Bits set on a parent (directory, table) fall back to their children
#define PTE_PRESENT (1ULL << 0)
#define PTE_WRITABLE (1ULL << 1)
#define PTE_USER (1ULL << 2)
#define PTE_PWT (1ULL << 3)
#define PTE_PCD (1ULL << 4)
#define PTE_HUGE (1ULL << 7)
#define PTE_NOEXEC (1ULL << 63)
// Specified in linker.ld
#define KERNEL_BASE 0xFFFFFFFF80000000ULL
// 2 MB should be enough (as of now, the whole kernel ELF is around 75kb)
#define KERNEL_SIZE 0x200000
#endif

103
src/mem/paging/pmm.c Normal file
View File

@@ -0,0 +1,103 @@
// OMG here we are. I'm cooked.
/*
pmm - Physical Memory Manager
will manage 4kb pages physically
it will probably need to get some info from Limine,
to see which pages are used by kernel/bootloader/mmio/fb etc.
*/
#include "paging.h"
#include <limine.h>
#include <stddef.h>
#include <stdint.h>
#include <kernel.h>
#include "mem/misc/utils.h"
#include "pmm.h"
/*
First we'll have to discover the physical memory layout,
and for that we can use a Limine request.
*/
/*
We will look for the biggest usable physical memory region
and use this for the bitmap. The reserved memory will be ignored.
*/
struct limine_memmap_entry* biggest_entry;
static void pmm_find_biggest_usable_region(struct limine_memmap_response* memmap, struct limine_hhdm_response* hhdm)
{
// Max length of a usable memory region
uint64_t length_max = 0;
uint64_t offset = hhdm->offset;
DEBUG("Usable Memory:");
for (size_t i=0; i<memmap->entry_count; i++)
{
struct limine_memmap_entry* entry = memmap->entries[i];
if (entry->type == LIMINE_MEMMAP_USABLE)
{
DEBUG("0x%p-0x%p mapped at 0x%p-0x%p", entry->base, entry->base+entry->length,
entry->base+offset, entry->base+entry->length+offset);
if (entry->length > length_max)
{
length_max = entry->length;
biggest_entry = entry;
}
}
}
DEBUG("Biggest usable memory region:");
DEBUG("0x%p-0x%p mapped at 0x%p-0x%p", biggest_entry->base, biggest_entry->base + biggest_entry->length,
biggest_entry->base+offset, biggest_entry->base+biggest_entry->length+offset);
}
// Offset from Higher Half Direct Map
uint64_t hhdm_off;
static uintptr_t g_freelist = 0;
uintptr_t pmm_alloc()
{
if (!g_freelist) return 0;
uintptr_t addr = g_freelist;
g_freelist = *(uintptr_t*) PHYS_TO_VIRT(g_freelist);
return addr;
}
void pmm_free(uintptr_t addr)
{
*(uintptr_t*) PHYS_TO_VIRT(addr) = g_freelist;
g_freelist = addr;
}
static void pmm_init_freelist()
{
// We simply call pmm_free() on each page that is marked USABLE
// in our big memory region.
uint64_t base = ALIGN_UP(biggest_entry->base, PAGE_SIZE);
uint64_t end = ALIGN_DOWN(biggest_entry->base + biggest_entry->length, PAGE_SIZE);
uint64_t page_count=0;
for (uint64_t addr = base; addr < end; addr += PAGE_SIZE)
{
pmm_free(addr);
//DEBUG("page %u lives at phys 0x%p (virt 0x%p)", page_count, addr, PHYS_TO_VIRT(addr));
page_count++;
}
DEBUG("%u frames in freelist, available for use (%u bytes)", page_count, page_count*PAGE_SIZE);
}
void pmm_init(struct limine_memmap_response* memmap, struct limine_hhdm_response* hhdm)
{
hhdm_off = hhdm->offset;
pmm_find_biggest_usable_region(memmap, hhdm);
//pmm_allocate_bitmap(hhdm); too complicated for my small brain
// Now we have biggest USABLE region,
// so to populate the free list we just iterate through it
pmm_init_freelist();
}

10
src/mem/paging/pmm.h Normal file
View File

@@ -0,0 +1,10 @@
#ifndef PAGING_PMM_H
#define PAGING_PMM_H
#include <limine.h>
void pmm_init(struct limine_memmap_response* memmap, struct limine_hhdm_response* hhdm);
void pmm_free(uintptr_t addr);
uintptr_t pmm_alloc();
#endif

66
src/mem/paging/vmm.c Normal file
View File

@@ -0,0 +1,66 @@
/*
The VMM (virtual memory manager) will have two roles:
- mapping pages
- unmapping pages
in a specified virtual space
compared to the PMM which allocs/frees 4kb frames ("physical pages").
*/
#include "vmm.h"
#include "paging.h"
#include <stddef.h>
#include "pmm.h"
#include <kernel.h>
void* vmm_pt_root = 0;
// Linked list head for virtual memory objects
struct vm_object* vm_objs = NULL;
uint64_t convert_x86_vm_flags(size_t flags)
{
uint64_t value = 0;
if (flags & VM_FLAG_WRITE)
{
value |= PTE_WRITABLE;
}
if (flags & VM_FLAG_USER)
{
value |= PTE_USER;
}
if ((flags & VM_FLAG_EXEC) == 0)
{
value |= PTE_NOEXEC;
}
return value;
}
extern uint64_t *kernel_pml4;
void vmm_setup_pt_root()
{
// We alloc a physical page (frame) for the pointer, then map it
// to virt (pointer)
uintptr_t phys = pmm_alloc();
vmm_pt_root = (void*)kernel_pml4;
paging_map_page(kernel_pml4, (uint64_t)vmm_pt_root, phys, convert_x86_vm_flags(VM_FLAG_WRITE | VM_FLAG_EXEC));
DEBUG("VMM setup: vmm_pt_root=0x%p (phys=0x%p)", vmm_pt_root, phys);
}
void* vmm_alloc(size_t length, size_t flags)
{
// We will try to allocate at least length bytes, which have to be rounded UP to
// the next page so its coherent with the PMM
size_t len = ALIGN_UP(length, PAGE_SIZE);
// Need to implement this (as linked list)
// but for now kernel heap is sufficient
// The VMM will prob be more useful when we have userspace
}
void vmm_init()
{
vmm_setup_pt_root();
}

29
src/mem/paging/vmm.h Normal file
View File

@@ -0,0 +1,29 @@
#ifndef VMM_H
#define VMM_H
#include <stdint.h>
#include <stddef.h>
/*
This will be our linked list of virtual memory objects.
Flags here aren't x86 flags, they are platform-agnostic
kernel-defined flags.
*/
struct vm_object
{
uintptr_t base;
size_t length;
size_t flags;
struct vm_object* next;
};
// Flags bitfield
#define VM_FLAG_NONE 0
#define VM_FLAG_WRITE (1 << 0)
#define VM_FLAG_EXEC (1 << 1)
#define VM_FLAG_USER (1 << 2)
void vmm_init();
#endif

6
src/string/string.c Normal file
View File

@@ -0,0 +1,6 @@
char* strcpy(char *dest, const char *src)
{
char *temp = dest;
while((*dest++ = *src++));
return temp;
}

6
src/string/string.h Normal file
View File

@@ -0,0 +1,6 @@
#ifndef STRING_H
#define STRING_H
char *strcpy(char *dest, const char *src);
#endif

View File

@@ -1,5 +1,5 @@
#include <stdint.h>
#include "../io/serial/serial.h"
#include "io/serial/serial.h"
#include <kernel.h>
/*